Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.07.14.201954

ABSTRACT

The coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide. The characterization of the immunological mechanisms involved in disease symptomatology and protective response is important to advance in disease control and prevention. Humans evolved by losing the capacity to synthesize the glycan Gal1-3Gal{beta}1-(3)4GlcNAc-R (-Gal), which resulted in the development of a protective response against pathogenic viruses and other microorganisms containing this modification on membrane proteins mediated by anti--Gal IgM/IgG antibodies produced in response to bacterial microbiota. In addition to anti--Gal antibody-mediated pathogen opsonization, this glycan induces various immune mechanisms that have shown protection in animal models against infectious diseases without inflammatory responses. In this study, we hypothesized that the immune response to -Gal may contribute to the control of COVID-19. To address this hypothesis, we characterized the antibody response to -Gal in patients at different stages of COVID-19 and in comparison with healthy control individuals. The results showed that while the inflammatory response and the anti-SARS-CoV-2 (Spike) IgG antibody titers increased, reduction in anti--Gal IgE, IgM and IgG antibody titers and alteration of anti--Gal antibody isotype composition correlated with COVID-19 severity. The results suggested that the inhibition of the -Gal-induced immune response may translate into more aggressive viremia and severe disease inflammatory symptoms. These results support the proposal of developing interventions such as probiotics based on commensal bacteria with -Gal epitopes to modify the microbiota and increase the -Gal-induced protective immune response and reduce the severity of COVID-19.


Subject(s)
COVID-19 , Viremia , Communicable Diseases
2.
preprints.org; 2020.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202005.0450.v1

ABSTRACT

Background: Since March 2020, Spain is severely hit by the ongoing pandemic of coronavirus disease 19 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding and disrupting the early transmission dynamics of the infection is crucial for impeding sustained transmission. Methods: We recorded all COVID-19 cases and traced their contacts in an isolated rural community. We also sampled 10 households, 6 public service sites and the wastewater from the village sewage for environmental SARS-CoV-2 RNA. Results: The first village patient diagnosed with COVID-19-compatible symptoms occurred on March 3, 2020, twelve days before lockdown. A peak of 39 cases occurred on March 30. By May 15, the accumulated number of symptomatic cases was 53 (6% of the population), of which only 22 (41%) had been tested and confirmed by RT-PCR as SARS-CoV-2 infected, including 16 hospitalized patients. Contacts (n=144) were six times more likely to develop symptoms. Environmental sampling detected SARS-CoV-2 RNA in two households with known active cases and in two public service sites: the petrol station and the pharmacy. Samples from other sites and the wastewater tested negative. Conclusions: The low proportion of patients tested by RT-PCR calls for urgent changes in disease management. We propose that early testing of all cases and their close contacts would reduce infection spread, reducing the disease burden and fatalities. In a context of restricted testing, environmental RNA surveillance might prove useful for early warning and to identify high-risk settings enabling a targeted resource deployment.


Subject(s)
COVID-19 , Coronavirus Infections , Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL